
High Performance and Distributed Computing for Big Data
Unit 3: AWS - S3

Ferran Aran Domingo ferran.aran@udl.cat

Universitat Rovira i Virgili and Universitat de Lleida

mailto:ferran.aran@udl.cat


Today’s lecture

• AWS S3: Storing files in the cloud

• Installing AWS CLI
• Configuring AWS credentials
• Creating an S3 bucket
• Syncing a local directory to upload to a bucket
• Loading files from the bucket to the notebook from python
• Writing files from the notebook to the bucket from python
• Syncinc a local directory to download from a bucket



Today’s lecture

• AWS S3: Storing files in the cloud
• Installing AWS CLI

• Configuring AWS credentials
• Creating an S3 bucket
• Syncing a local directory to upload to a bucket
• Loading files from the bucket to the notebook from python
• Writing files from the notebook to the bucket from python
• Syncinc a local directory to download from a bucket



Today’s lecture

• AWS S3: Storing files in the cloud
• Installing AWS CLI
• Configuring AWS credentials

• Creating an S3 bucket
• Syncing a local directory to upload to a bucket
• Loading files from the bucket to the notebook from python
• Writing files from the notebook to the bucket from python
• Syncinc a local directory to download from a bucket



Today’s lecture

• AWS S3: Storing files in the cloud
• Installing AWS CLI
• Configuring AWS credentials
• Creating an S3 bucket

• Syncing a local directory to upload to a bucket
• Loading files from the bucket to the notebook from python
• Writing files from the notebook to the bucket from python
• Syncinc a local directory to download from a bucket



Today’s lecture

• AWS S3: Storing files in the cloud
• Installing AWS CLI
• Configuring AWS credentials
• Creating an S3 bucket
• Syncing a local directory to upload to a bucket

• Loading files from the bucket to the notebook from python
• Writing files from the notebook to the bucket from python
• Syncinc a local directory to download from a bucket



Today’s lecture

• AWS S3: Storing files in the cloud
• Installing AWS CLI
• Configuring AWS credentials
• Creating an S3 bucket
• Syncing a local directory to upload to a bucket
• Loading files from the bucket to the notebook from python

• Writing files from the notebook to the bucket from python
• Syncinc a local directory to download from a bucket



Today’s lecture

• AWS S3: Storing files in the cloud
• Installing AWS CLI
• Configuring AWS credentials
• Creating an S3 bucket
• Syncing a local directory to upload to a bucket
• Loading files from the bucket to the notebook from python
• Writing files from the notebook to the bucket from python

• Syncinc a local directory to download from a bucket



Today’s lecture

• AWS S3: Storing files in the cloud
• Installing AWS CLI
• Configuring AWS credentials
• Creating an S3 bucket
• Syncing a local directory to upload to a bucket
• Loading files from the bucket to the notebook from python
• Writing files from the notebook to the bucket from python
• Syncinc a local directory to download from a bucket



S3 - Storing files in the cloud



What is S3?

Amazon S3 (Simple Storage Service) is an object storage service that offers industry-leading scalability,
data availability, security, and performance. It is designed to store and retrieve any amount of data
from anywhere on the web.



S3 - Buckets and Objects

• Buckets: In Amazon S3, a bucket is a unique container for objects. Every object is stored within
a bucket.

• The bucket name must be globally unique across all existing bucket names in Amazon S3.
• Buckets are used to store and organize objects.

• Objects: Objects are the fundamental entities within a bucket. They consist of data and
metadata.

• The information within an object is stored as a key-value pair.
• The key, which is a unique identifier, is used to organize objects within the bucket. It is often

formatted as a prefix to the object name.

For example, we can create a bucket called hdcb-{your-name} and store objects organized by session or
other criteria.

data-{your-name}/
project1/data.csv
project2/data.csv

Terms

• Key = prefix + object name
• prefix = project1/ or project2/
• object name = data.csv



S3 Pricing

Amazon S3 pricing is based on five factors:

1. Storage Class: The cost depends on the storage class used (Standard, Intelligent-Tiering, One
Zone-IA, etc.).

2. Storage: The total volume of data stored per month.
3. Requests: The number and type of requests made.
4. Data Transfer: The cost of transferring data can vary by region and is also affected by whether

data is transferred in or out.
5. Management & Replication: Additional features like data replication or management operations

can also affect the cost.

For detailed information, you can refer to the Amazon S3 Pricing Page.

https://aws.amazon.com/s3/pricing/


AWS CLI



What is the AWS CLI?

The AWS CLI is a tool that allows you to interact with AWS services from the command line. It is a
powerful tool that can be used to automate tasks and manage your AWS resources.

[ec2-user@ip-172-31-86-82 ~]$ aws

usage: aws [options] <command> <subcommand> [<subcommand> ...] [parameters]
To see help text, you can run:

aws help
aws <command> help
aws <command> <subcommand> help

aws: error: the following arguments are required: command

[ec2-user@ip-172-31-86-82 ~]$

This is the base command which by itself doesn’t do anything. What we are going to do now is to
configure the AWS CLI with our credentials so we can later run commands that can access other AWS
resources like S3.



Installing the AWS CLI

Visit the AWS CLI installation guide to install the AWS CLI on your machine.

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html


Installing the AWS CLI

Paste the command on the terminal and wait for the installation to complete.



Installing the AWS CLI

Or if you are on MacOS, go to the MacOS section and also paste the corresponding commands on
your terminal.

To check if the AWS CLI is correctly installed, run aws --version and you should see something like
this:

aws --version
aws-cli/2.24.15 Python/3.12.9 Windows/10 exe/AMD64

If the command instead outputs an error that means we have to install the AWS CLI on our local
machine.



Configuring the AWS Credentials

We’re now going to visit the Learner Lab page on the AWS Academy website to get our credentials.
You have this guide and this guide available on the subject’s website to help you with setting up AWS.
Wait until the lab loads and you see the page below.

https://hdbc-17705110-mdbs.github.io/HandsOnLabs/guide1.html
https://hdbc-17705110-mdbs.github.io/HandsOnLabs/guide2.html
https://hdbc-17705110-mdbs.github.io/HandsOnLabs/


Configuring the AWS Credentials

Now click on AWS Details and then on Show to reveal your credentials.



Configuring the AWS Credentials

You’ll see some text containing your credentials.



Configuring the AWS Credentials

Next we need to paste that text to a file called credentials inside the .aws folder in our home
directory.

Make sure the .aws folder exists on your local machine by running mkdir .aws command (remember
if it throws an error there’s nothing to worry about, it just means the folder already exists). Now we
are going to create the credentials file inside the .aws folder. Run the following command:

notepad .aws/credentials.

or for MacOS users:

open .aws/credentials.

This will open a text editor where you can write the credentials.



Configuring the AWS Credentials

Go back to the AWS Academy website and copy the text containing your credentials.



Configuring the AWS Credentials

Now go back to the text editor. Paste the credentials and save the file. You can now exit the text
editor.



Configuring the AWS Credentials

We can check the contents of the file using cat :

PS C:\Users\fnao> cat .aws\credentials
[default]
aws_access_key_id=ASIA2CKYVHJAOXR6P57M
aws_secret_access_key=lu/KjIjBylX60GTfsqHvRyAqcqhsEVHsdzWDPlrT
aws_session_token=IQoJb3JpZ2...
PS C:\Users\fnao>



Configuring the AWS Credentials

To test if the configuration was successful, run aws sts get-caller-identity and you should see
something like this:

PS C:\Users\fnao> aws sts get-caller-identity
{

"UserId": "AROA2CKYVHJALK46ZMHVM:user3869188=Ferran_Aran_Test",
"Account": "692212546112",
"Arn": "arn:aws:sts::692212546112:assumed-role/voclabs/user3869188=Ferran_Aran_Test"

}

PS C:\Users\fnao>

Great! We can now run AWS CLI commands on our local machine to manage our AWS resources. For
example, we can upload files to an S3 bucket.



S3 Buckets



Creating a S3 bucket

Use the searchbar to head to the S3 service.



Creating a S3 bucket

Click on Create bucket .



Creating a S3 bucket

Name the bucket data-{your-name} . For example I will be naming it data-ferran-aran . Bucket
names have to be unique across all of AWS.



Creating a S3 bucket

Leave everything else as default, scroll all the way down and click on Create bucket .



Creating a S3 bucket

You will now be headed to the S3 dashboard. You should see a success message and the bucket you
just created.



Uploading a file to the bucket

1. Click on the bucket.
2. Create a folder and name it test .
3. Click on the folder.
4. Click on Upload.
5. Click on Add files and select an example file.
6. Click Upload.

Our bucket data-{your-name}/ now contains one file. It is stored in s3://data-{your-name}/test.
This file is private by default. Only the owner can access them.



Sync with a bucket



Syncing a local directory to upload to a bucket

1. Go to your desktop and create a folder named data .
2. Create a file named my-dataset.txt and write some text in it. Save it.
3. Open a terminal and navigate to the folder. Use cd Desktop .
4. Run aws s3 sync data s3://data-{your-name} to upload the files to the bucket. In my case

this is the result:

PS C:\Users\fnao\Desktop> aws s3 sync data s3://data-ferran-aran
upload: data\my-dataset.txt to s3://data-ferran-aran/my-dataset.txt

That’s it! You have now uploaded a file to the bucket!



Inspecting the bucket from the AWS Console

Go to the S3 dashboard on AWS and click on the bucket we just created.



Inspecting the bucket from the AWS Console

You will see the contents of the bucket, in this case the file my-dataset.txt .



Inspecting the bucket from the AWS Console

Click on the file to see further details.



Working with S3 from python



Configuring AWS credentials on an EC2 instance

The first thing we’ll have to do is to connect to our EC2 instance we configured during last session.
More information on last session can be found here.

Once we are connected through SSH on a remote termnial, we’ll need to configure AWS Credentials
similarly to how we did on our local machine. But this time we will have to use a terminal editor.

If this steps get confiusing I suggest checking this guide on the subject’s website for a more detailed
explanation.

https://hdbc-17705110-mdbs.github.io/HandsOnLabs/session3.html
https://hdbc-17705110-mdbs.github.io/HandsOnLabs/guide2.html


Configuring AWS credentials on an EC2 instance

The first thing we’ll have to do is to connect to our EC2 instance we configured during last session.
More information on last session can be found here.

Once we are connected through SSH on a remote termnial, we’ll need to configure AWS Credentials
similarly to how we did on our local machine. But this time we will have to use a terminal editor.

If this steps get confiusing I suggest checking this guide on the subject’s website for a more detailed
explanation.

https://hdbc-17705110-mdbs.github.io/HandsOnLabs/session3.html
https://hdbc-17705110-mdbs.github.io/HandsOnLabs/guide2.html


Configuring AWS credentials on an EC2 instance

The first thing we’ll have to do is to connect to our EC2 instance we configured during last session.
More information on last session can be found here.

Once we are connected through SSH on a remote termnial, we’ll need to configure AWS Credentials
similarly to how we did on our local machine. But this time we will have to use a terminal editor.

If this steps get confiusing I suggest checking this guide on the subject’s website for a more detailed
explanation.

https://hdbc-17705110-mdbs.github.io/HandsOnLabs/session3.html
https://hdbc-17705110-mdbs.github.io/HandsOnLabs/guide2.html


Configuring AWS credentials on an EC2 instance

EC2 machines come with AWS CLI already installed so we won’t have to worry about that.

Remember we first need to make sure the .aws folder exists in the home directory of the user we are
using. If it doesn’t exist we can create it by running mkdir .aws .

Next we need to create the credentials file inside the .aws folder. We can do this by running
nano .aws/credentials .

The nano text editor will open and we can paste the credentials we copied from the AWS Academy
website.

To save the file we can press Ctrl + X and then Y and finally Enter . See the following screenshots
of the process.



Configuring AWS credentials on an EC2 instance

EC2 machines come with AWS CLI already installed so we won’t have to worry about that.

Remember we first need to make sure the .aws folder exists in the home directory of the user we are
using. If it doesn’t exist we can create it by running mkdir .aws .

Next we need to create the credentials file inside the .aws folder. We can do this by running
nano .aws/credentials .

The nano text editor will open and we can paste the credentials we copied from the AWS Academy
website.

To save the file we can press Ctrl + X and then Y and finally Enter . See the following screenshots
of the process.



Configuring AWS credentials on an EC2 instance

EC2 machines come with AWS CLI already installed so we won’t have to worry about that.

Remember we first need to make sure the .aws folder exists in the home directory of the user we are
using. If it doesn’t exist we can create it by running mkdir .aws .

Next we need to create the credentials file inside the .aws folder. We can do this by running
nano .aws/credentials .

The nano text editor will open and we can paste the credentials we copied from the AWS Academy
website.

To save the file we can press Ctrl + X and then Y and finally Enter . See the following screenshots
of the process.



Configuring AWS credentials on an EC2 instance

EC2 machines come with AWS CLI already installed so we won’t have to worry about that.

Remember we first need to make sure the .aws folder exists in the home directory of the user we are
using. If it doesn’t exist we can create it by running mkdir .aws .

Next we need to create the credentials file inside the .aws folder. We can do this by running
nano .aws/credentials .

The nano text editor will open and we can paste the credentials we copied from the AWS Academy
website.

To save the file we can press Ctrl + X and then Y and finally Enter . See the following screenshots
of the process.



Configuring AWS credentials on an EC2 instance



Configuring AWS credentials on an EC2 instance



Configuring AWS credentials on an EC2 instance



Configuring AWS credentials on an EC2 instance



Configuring AWS credentials on an EC2 instance

We can now test if the configuration was successful by running aws sts get-caller-identity .

If the configuration was successful we should see something like this:

{
"UserId": "AROA2CKYVHJALK46ZMHVM:user3869188=Ferran_Aran_Test",
"Account": "692212546112",
"Arn": "arn:aws:sts::692212546112:assumed-role/voclabs/user3869188=Ferran_Aran_Test"

}



Configuring AWS credentials on an EC2 instance

We can now test if the configuration was successful by running aws sts get-caller-identity .

If the configuration was successful we should see something like this:

{
"UserId": "AROA2CKYVHJALK46ZMHVM:user3869188=Ferran_Aran_Test",
"Account": "692212546112",
"Arn": "arn:aws:sts::692212546112:assumed-role/voclabs/user3869188=Ferran_Aran_Test"

}



Configuring AWS credentials on an EC2 instance

We can now test if the configuration was successful by running aws sts get-caller-identity .

If the configuration was successful we should see something like this:

{
"UserId": "AROA2CKYVHJALK46ZMHVM:user3869188=Ferran_Aran_Test",
"Account": "692212546112",
"Arn": "arn:aws:sts::692212546112:assumed-role/voclabs/user3869188=Ferran_Aran_Test"

}



Reading files from S3 with python

We are going to be using the boto3 python library to access and write S3 files from a jupyter notebook.
This library allows Python developers to write software that makes use of services like Amazon S3 on
AWS.

We’ll need to first activate one of the environment we created during the last session. For example, I
will be using project1 environment. Follow the steps below to activate the environment and install
boto3 :

cd project1
source .project1/bin/activate
pip install boto3

https://pypi.org/project/boto3/


Reading files from S3 with python

Once that is done, launc the jupyter server with the command below:

jupyter notebook --no-browser --port=8888 --ip=0.0.0.0

Remember on last session we saw the steps to access the jupyter notebook from our local machine. If
you need a refresher you can check Session 3 on the subject’s website.

https://hdbc-17705110-mdbs.github.io/HandsOnLabs/session3.html


Reading files from S3 with python

Open a jupyter notebook and paste the following code:

import boto3

DATA_BUCKET_NAME = "data-your-name"
DATA_FILE_NAME = "my-dataset.txt" # Path to the file in S3

s3 = boto3.client("s3")

response = s3.get_object(Bucket=DATA_BUCKET_NAME, Key=DATA_FILE_NAME)
file_content = response["Body"].read().decode("utf-8") # Decode the file content
print("File Content:\n", file_content)

Be careful to replace data-your-name with the name of the bucket you created and my-dataset.txt
with the name of the file you uploaded.



Reading files from S3 with python

If everything is correct you should see the content of the file printed in the notebook.



RECAP: Accessing the file from the notebook

To access the file from the notebook we have used our
aws-credentials for the current user (owner of the bucket).

Be aware!
Someone could log into your jupyter instance in the browser and access the file using your credentials.

What to do?
In real life, we would use IAM roles to give the notebook the necessary permissions to access the file.
But, in AWS Educate, we can not use IAM roles.

Another option
Make the file public and access it without credentials :)



RECAP: Accessing the file from the notebook

To access the file from the notebook we have used our
aws-credentials for the current user (owner of the bucket).

Be aware!
Someone could log into your jupyter instance in the browser and access the file using your credentials.

What to do?
In real life, we would use IAM roles to give the notebook the necessary permissions to access the file.
But, in AWS Educate, we can not use IAM roles.

Another option
Make the file public and access it without credentials :)



RECAP: Accessing the file from the notebook

To access the file from the notebook we have used our
aws-credentials for the current user (owner of the bucket).

Be aware!
Someone could log into your jupyter instance in the browser and access the file using your credentials.

What to do?
In real life, we would use IAM roles to give the notebook the necessary permissions to access the file.
But, in AWS Educate, we can not use IAM roles.

Another option
Make the file public and access it without credentials :)



RECAP: Accessing the file from the notebook

To access the file from the notebook we have used our
aws-credentials for the current user (owner of the bucket).

Be aware!
Someone could log into your jupyter instance in the browser and access the file using your credentials.

What to do?
In real life, we would use IAM roles to give the notebook the necessary permissions to access the file.
But, in AWS Educate, we can not use IAM roles.

Another option
Make the file public and access it without credentials :)



Writing files to S3 with python

We can also write files to S3 using boto3. Lets first create another bucket that to store the files we will
write from the notebook. This one we will call results-{your-name} .

Leave everything as default like before and scroll all the way down to click on Create bucket .



Writing files to S3 with python

We’re now going to use the following code to write a file to the bucket we just created:

RESULTS_BUCKET_NAME = "results-your-name"
RESULT_FILE_NAME_LOCAL = "new-file.txt" # The file name in this computer
RESULT_FILE_NAME_S3 = "project1/new-file.txt" # The file name in S3

# Create the file and write some content
file_content = "This is a test file uploaded to S3."
with open(RESULT_FILE_NAME_LOCAL, "w") as file:

file.write(file_content)

# Upload to S3
s3.upload_file(RESULT_FILE_NAME_LOCAL, RESULTS_BUCKET_NAME, RESULT_FILE_NAME_S3)
print(f"File '{RESULT_FILE_NAME_LOCAL}' successfully uploaded to 's3://{RESULTS_BUCKET_NAME}/{RESULT_FILE_NAME_S3}'")



Writing files to S3 with python

If everything is correct you should see the following:



Inspecting the bucket from the AWS Console

We can now navigate to the S3 dashboard and click on the results-{your-name} bucket.



Inspecting the bucket from the AWS Console

Inside the bucket we should see the folder we just created, click on it.



Inspecting the bucket from the AWS Console

And now we should see the file we just uploaded.



Sync with a bucket



Syncing a local directory to download from a bucket

1. Create a new folder on your desktop and name it results .
2. Open a terminal and navigate to the folder. Use cd Desktop .
3. Run aws s3 sync s3://results-{your-name} results to download the files from the bucket.

In my case this is the result:

PS C:\Users\fnao\Desktop> aws s3 sync s3://results-ferran-aran results
download: s3://results-ferran-aran/project1/new-file.txt to results\project1\new-file.txt
PS C:\Users\fnao\Desktop>



Syncing a local directory to download from a bucket

We can use the File Explorer to navigate to the folder and see the file we just downloaded.



Recap



Recap - Today’s contents

Today we have learned how to:

• Install the AWS CLI
• Configure AWS credentials
• Create an S3 bucket
• Sync a local directory to download from a bucket
• Sync a local directory to upload to a bucket
• Load files from the bucket to the notebook from python
• Write files from the notebook to the bucket from python



Recap - Use cases

• With the setup we have done today we ended up with a bucket on which we can upload datasets
that we have to work on.

• This datasets can be accessed from any machine with internet connection and the necessary
permissions.

• We also have a resulsts bucket which we can sync with our machine so we have the results of
our projects available locally.



Recap - Subject’s website

• Remember there is a website with useful information related to the subject.
• It has recently been updated with information about past sessions.
• Two new guides have been added to Get started with AWS and Set up your Lab for every session.

https://hdbc-17705110-mdbs.github.io/HandsOnLabs/
https://hdbc-17705110-mdbs.github.io/HandsOnLabs/guide1.html
https://hdbc-17705110-mdbs.github.io/HandsOnLabs/guide2.html

	S3 - Storing files in the cloud
	AWS CLI
	S3 Buckets
	Sync with a bucket
	Working with S3 from python
	Sync with a bucket
	Recap

